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Stable ultrafast graphene hot-electron
source on optical fiber

Guangjie Yao1,2,11, Hao Hong 1,3,11 , Xu Zhou 4,11, Kaifeng Lin 1,2,11,
Huazhan Liu1, Yilong You1, Chang Liu 1, Ke Chen 5, Chi Li5, Jianbo Yin 6,
Zhujun Wang 7, Xuewen Fu 8, Qing Dai 5 , Dapeng Yu 1,9 &
Kaihui Liu 1,10

A stable and durable ultrafast electron source is highly desirable for sophisti-
cated vacuum electron technologies. However, free-space excitations based
on ultrahigh-power or deep-ultraviolet pulsed lasers usually cause cathode
material damage and mechanical vibration even under ultrahigh vacuum.
In this work, we present a compact ultrafast electron source consisting of
graphene integrated on an optical fiber, taking advantage of the ultrafast hot-
electron emission from graphene and well-defined single-mode excitation
from the optical fiber. With mild excitation (~1 GW/cm2, infrared laser), an
ultrashort electron pulse (width of ~ 80 fs) with high stability (fluctuation
≤±0.5% in 8 hours) and longevity (T90 > 500hours) can be generated even
under relatively high ambient pressure (up to 100 Pa). This compact source
has been facilely integrated into a commercial electron microscope for time-
resolved imaging and spectroscopy.Our grapheneopticalfiber-basedultrafast
electron source offers a promising solution to support the development of
vacuum electron instruments.

An ultrafast electron microscope system enables monitoring of
microscopic evolution at high spatial and temporal resolutions
through ultrafast electron diffraction, imaging, energy loss spectro-
scopy, and cathodoluminescence (CL)1–5. The characterization resolu-
tion and functionality of the system are directly determined by the
performance of the ultrafast electron source6–9. Generally, the pulsed
electron emission from a photocathode (typically made of metallic
materials such as gold, tungsten or LaB6 or low-dimensional materials
such as carbon nanotubes or fullerene) is driven by mechanisms of
multiphoton emission, optical field emission or the photoelectric

effect under ultrafast laser pumping10–14. For multiphoton emission
and optical field emission, a very intense laser (~100GW/cm2) is
required, which may often cause distinct damage (atom evaporation,
local melting, oxidization, etc.) to the cathodematerials15 and requires
an ultrahigh vacuum environment (~10−7 Pa). For the photoelectric
effect, single-photon excitation with a low-intensity laser is applicable,
but the ultraviolet pump light (photon energy of typically above
3.6–5 eV) complicates the laser system and is more likely to cause
ionization and damage to the cathode materials16. These harsh oper-
ating conditions directly reduce the stability and lifetime of the
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photocathode and increase the complexity of utilizing ultrafast elec-
tron sources. Moreover, most of the available ultrafast electron sour-
ces suffer from an unavoidable time-dependent beam current decay
under the ultrafast laser excitation and have to reflash and re-focus
after each operation period (usually 4–6 hours)17,18, causing the low
operation efficiency and unstable data quality of the ultrafast electron
microscopy. Therefore, despite the extensive progress and successful
application of ultrafast electron sources in recent decades, there is still
a pressing need to explore photocathode materials and driving
mechanisms for a stable ultrafast electron source that can broaden its
applications.

Graphene is a promising material for photoemission due to its
unique hot-carrier dynamics. After photoexcitation, electrons in gra-
phene undergo ultrafast thermalization and energy up-conversion
driven by strong electron–electron scattering19–25, which is determined
to be much more efficient than that of conventional metals26. The hot
carriers are distributed over the entire Dirac energy band, with a quasi-
equilibrium temperature of a few thousand Kelvins on an ultrashort
time scale of ~30 fs. These unique ultrafast dynamic processes make
graphene appealing for diverse photonic and optoelectronic
devices27–32. In principle, the hot carriers in graphene also have the
possibility of overcoming the work function and escaping into the
vacuum for electron emission in an ultrafast way33.

Potentially, the ultrafast hot-electron emission fromgraphene has
the following advantages: (i) the pulsed laser mainly heats the elec-
trons, with the lattice mostly remaining cool (typically lower than
400K)22, allowing graphene to serve as an ultrastable photocathode
for a long operation timewithout the need for an strictly high vacuum;
(ii) the electron thermalization (~30 fs) and cooling (~1 ps) are transient
processes, resulting in an ultrashort electron pulse width; and (iii) the
hot-carrier distribution strongly depends on the pump fluence rather
than the pump photon energy, so a relatively low-power near-infrared
laser can efficiently heat hot carriers to produce a large photoemission
flux26. Thus, graphene holds great potential as an ultrafast electron
source with great stability by exploiting ultrafast and efficient hot-
carrier thermalization. Recently, static thermionic electron emission
from graphene under direct laser or electric heating has been
observed34,35, utilizing strong carbon‒carbon bonds and ultralow
defect densities for thermal stability. However, hot-electron photo-
emission from graphene for ultrafast electron source usage still needs
to be fully explored.

Here, we present a stable ultrafast hot-electron source by inte-
grating graphene on the end face of a single-mode optical fiber. In
addition to their good integrability36,37, we demonstrate that optical
fibers can be elaborately used to further augment the stability, as they
provide stable and tight focusing of a well-defined Gaussian optical
mode for driving electron emission. By exploiting the hot-carrier
thermalizationmechanism and the unique architecture of optical fiber
integration, we show that our graphene ultrafast hot-electron source
exhibits state-of-the-art high performance and merits of superior sta-
bilities, encompassing operational fluctuations, durability, cyclability
and pressure tolerance.

Results and discussion
Photo-induced graphene hot-electron emitter on optical fiber
In our experiment, we fabricate an optical fiber-integrated graphene
hot-electron source (Fig. 1a) by transferring mechanically exfoliated
graphene onto the end face of a single-mode optical fiber (Fig. 1b) (see
Methods and Supplementary Fig. 1 for fabrication details). Graphene is
grounded via contact with a pre-deposited gold pattern, and an
opposite anode (~170μm from cathode) is positively biased to collect
vacuum electrons emitted from graphene. The pump laser (photon
energy of 0.8 eV, pulse width of ~250 fs, repetition rate of 80MHz, if
not otherwise specified) is directly coupled into the other end of the
optical fiber (mode field diameter of ~10μm) and tightly illuminates

the graphene. During the experiments, we record the ultrafast pho-
toluminescence (PL) and photoemission current from graphene by
means of a spectrometer and a source meter, respectively (see Meth-
ods for details). The ultrafast PL spectrum exhibits a broadband curve
ranging from the near-infrared to visible region, which stems from the
blackbody radiationofhot carriers in graphene (Fig. 1c) and canbewell
fitted with Planck’s law (solid fitting lines)19,20. By extracting the tem-
perature parameter from the spectra, we obtain an excitation power-
dependent electron temperature (Te), as shown in Fig. 1d. The electron
temperature monotonically increases with excitation power and
reaches more than 2500K at 35mW excitation. Simultaneously, we
find a significant current between the graphene cathode and the
opposite anode, indicating the successful detection of photoemission
from graphene. The photoemission current depends on both the bias
voltage (Vb) and excitation power. It slowly increases with bias voltage
according to a sublinear relation (Fig. 1e, which can be described by
Longo equation of thermionic emission38 as shown in Supplementary
Fig. 2) and exhibits a high-order nonlinear dependence on the laser
excitation power (power dependence order of ~4.8).

The photoemission behavior of our graphene photocathode is
quite different from that of conventional static electric field emission,
where the ultrafast electron emission is driven by the mechanism of
multiphoton emission or the photoelectric effect. In the case of elec-
tric field-driven electron emission, the Fowler–Nordheim equation
describes a drastic increase in current with applied voltage39, which
contrasts with the small electric field (<0.1 V/μm) and slow-varying
current shown in Fig. 1e. For a photocathode working in the multi-
photon emission regime, the product of the photon energy (hν
=0.8 eV) and power dependence order (n�4.8) should exceed the
material work function (Fig. 1f). However, the calculated value of n � hν
=3.8 eV is far below the work function of graphene (~4.5 eV)27,35 for
photoemission. Moreover, photoexcitation at 1.55 eV yields a similar
value of n�4:9 as that at 0.8 eV, which deviates from the scenarios of
multiphoton emission and the photoelectric effect (Supplementary
Fig. 3 and Supplementary Fig. 4).

The high electron temperature suggests the mechanism of hot-
electron emission in graphene. Figure 1g shows the photoemission
current as a function of the electron temperature. The current (I)
drastically increases with temperature, which can be well described by
the Richardson–Dushman law as

I =CT2
e exp � ϕ

kBTe

� �
, ð1Þ

where C is a constant related to the emission geometry, kB is the
Boltzmann constant, Te is the electron temperature, and ϕ is the work
function of graphene. lnðI=Te

2Þ versus 1=Te demonstrates a high
degree of linearity, as shown in Fig. 1h, confirming the occurrence of a
thermionic electron emission mechanism.

Temporal characterization of electron pulse
Themechanismof hot-electron emissionwith transient thermalization
and cooling of hot carriers enables graphene to generate an ultrafast
electron pulse. Figure 2a, b shows the calculated Fermi-Dirac dis-
tribution andpopulationdensity distribution in graphene as a function
of energy at different electron temperatures. As the temperature
increases, electrons with energy above the work functionϕwill escape
from graphene into the vacuum and contribute to electron emission.
Thus, we can obtain temporal information on the blackbody radiation
and electron emission current based on the temperature evolution of
hot carriers after photoexcitation (Supplementary Note 1). Theoreti-
cally, the hot carriers follow a two-temperaturemodel (Fig. 2c)20. After
excitation, the intraband and interband carrier scattering impel pho-
toexcited electrons and holes to thermalize at an equilibrium tem-
perature (Te) and extend their distribution throughout the whole
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energy band on a timescale of ~30 fs20,22. Then, the hot carriers
experience further cooling and relaxation via scattering with optical
phonons located in Γ and K points of Brillouin zone40,41 (with energy
scale of ~160–200meV, temperature labeled as Tph). Finally, both
electron and optical phonon system loss energy to the low-energy
acoustic phonon system and cool down (Fig. 2c). During the transient
thermalization process (electron transport time within graphene is
neglected due to the atomic-scale thickness), the time-resolved elec-
tron emission can be derived from the Richardson–Dushman law
(Fig. 2d). The electron pulse has a pulse width of ~85 fs, with a negli-
gible thermal lag effect (Supplementary Fig. 5).

Experimentally, we employ two-pulse autocorrelation measure-
ments (Supplementary Fig. 6) to obtain temporal information about
the ultrafast PL (Supplementary Fig. 7) and electron emission at the
same time19,20. As shown in Fig. 2e, the time-resolved electron emission
current exhibits a dynamic lifetime of ~60 fs. Because the electron
transit time to the surface can be negligible due to graphene’s atomic-
scale thickness, this 60 fs lifetime corresponds to a pulse width of
~80 fs (Supplementary Fig. 8)27. Moreover, the electron dynamic life-
time is nearly independent of excitation power (Supplementary Fig. 9).
Wenote that the ~60 fs lifetime is limitedby thewidth of the laser pulse

(~180 fs) used in our optical fiber. We further test a graphene electron
emission source fabricated on a Si/SiO2 substrate under ~40 fs near-
infrared (~1.55 eV) laser pumping and find an ~25 fs electron dynamic
lifetime (Supplementary Fig. 10). The compressed dynamic lifetime in
electron emission is attributed to the high nonlinearity of the carrier
thermalization, which agrees well with our theory (Fig. 2f).

Efficiency and stability of graphene ultrafast electron source
The unique ultrafast hot-electron emissionmechanism and the optical
fiber-integrated architecture endow graphene with excellent photo-
emission efficiency and stability. Due to the effective hot-carrier
thermalization24,26, the quantum efficiency (defined by collected elec-
tron flux over incident photon flux) of hot-electron emission is
determined to be ~10−9 at 2.2 GW/cm2 for graphene, which is several
orders of magnitude greater than that of traditional multiphoton or
optical field emission under the same lowpump intensity (Fig. 3a). The
utilizationof a low-intensity near-infrared laser andaweakelectricfield
(<0.1 V/μm) for hot-electron emission in graphene potentially miti-
gates the effects of ion back-bombardment, gas adsorption and local
melting. Crucially, the pulsed laser only heats the carriers, while the
lattice mostly remains cool20, thus preventing thermal evaporation of
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Fig. 1 | Optical fiber-integrated graphene ultrafast hot-electron emitter.
aMechanism of hot-electron emission from graphene after pulsed laser excitation.
The carrier distribution evolves from discrete energy levels to quasi-equilibrium
thermalization, which is driven by strong electron–electron scattering. The ther-
malized hot electrons with energies above the graphene work function escape into
the vacuum for electron emission. b Illustration of the optical fiber-integrated
graphene ultrafast hot-electron source. Graphene is capped onto the end face of an
optical fiber and grounded via a pre-deposited gold pattern. Under pulsed laser
excitation coupled into the optical fiber, graphene exhibits ultrafast photo-
luminescence (PL) and photoemission. c Excitation power-dependent ultrafast PL
spectra (circles) of optical fiber-integrated graphene. The spectra can be fitted with

Planck’s law of blackbody radiation (solid lines). d Derived electron temperature
(Te) as a function of excitation power. Error bars are from fitting standard error.
eCollected photoemission current as a function of bias voltage (Vb) under different
excitation powers. The current sublinearly increases with Vb. f Excitation power-
dependent photoemission current at Vb = 10V. The current nonlinearly increases
with increasing excitationpower,with afitting slopeof ~4.8. The error bars are from
the standarddeviation across about 100 points.gCollectedphotoemission current
as a function of hot-electron temperature. h Richardson‒Dushman plot of the data
in (g). The linearfitting yields awork function of 4.1 eV, which is very close to that of
suspended graphene. All the acquired data are obtained under 1560 nm pulsed
laser excitation with a single-mode optical fiber.
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carbon atoms. Furthermore, our systememploys a single-modeoptical
fiber to selectively couple the fundamental mode laser for tight-focus
excitation. This strategy effectively reduces the influence of vibrations
from the optical mode and focus status. Additionally, graphene’s
robust in-plane carbon-carbon bonding and lack of out-of-plane dan-
gling bonds contribute to a stable electron emission surface, effec-
tively inhibiting atom evaporation. Consequently, our graphene hot-
electron source integrated with an optical fiber exhibits significant
potential for stability, encompassing operational fluctuations, dur-
ability, cyclability and pressure tolerance.

To quantitatively evaluate the operational fluctuations and dur-
ability, we fix the laser excitation power and monitor the emission
current over time (Fig. 3b). The fluctuations remain within ±0.5% for
8 hours (Fig. 3b inset), which should be the most stable ultrafast
electron source to our knowledge (Supplementary Table 1). The con-
tinuous operation lifetime T90 (defined as the time at which the
emission current decreases to 90%of the initial value) is determined to
be ~500hours, which is one of the highest among all the reported
ultrafast electron sources. During the on–off cycling test of the laser,
the emission current remainswithin ±0.4%when the laser is repeatedly
turned on at 44mW (Fig. 3c). When the laser is turned off, the pho-
toemission current can be completely shut down, benefiting from the
low driven static electric field (eliminating the static electric field
emission in our architecture), which ensures the production of pure
pulsed electrons without the interference of continuous electron
signals.

Figure 3d shows the stable emission current at different working
pressures. The cool lattice guarantees the reliability of the electron
emission process under a poor vacuum environment. Thus, the cur-
rent remains almost constant as the pressure increases from 10−5 Pa to
101Pa. It even has significant current under 102Pa, in contrast to the
conventional ultrafast electron sources requiring ~10−7 Pa. This means
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that an individual primary pump (i.e., scroll pump) can meet the
requirements for normal operation of our ultrafast electron source.
We note that the slight current decrease under high pressure is
attributed to the shortened electron mean free path and gas absorp-
tion at high pressure, which can recover as the pressure decreases
(Supplementary Fig. 11).

Integration on ultrafast scanning electron microscope
This kind of electron source shows state-of-the-art high performance
and great integrability for equipment. The brightness properties of the
source aremeasured (Supplementary Table 2), with a normalized root
mean square emittance of 46 nm � rad (Supplementary Fig. 12), peak
reduced brightness of 2:7 × 104A=ðm2 � sr � VÞ (Supplementary Note 2)
and energy spread of FWHM=0.5 eV (Supplementary Fig. 13). As a
demonstration example, we equip the optical fiber-integrated gra-
phene ultrafast hot-electron source on a commercial desktop scanning
electron microscope (SEM) to empower the time-resolved capability
(Fig. 4a). The tailormade electron gun is composed of the optical fiber-
integrated graphene ultrafast hot-electron source, a Wehnelt cylinder
and anode electrodes. Under laser excitation, clear images can be
obtained using an Everhart-Thornley (E-T) detector (Fig. 4b bottom),
showing a lateral resolution of ~100 nm (Supplementary Fig. 14). When
the excitation laser is turned off, totally dark images are collected
(Fig. 4b top). This high signal-to-background ratio for high-sensitivity
detection benefits from the pure pulsed electrons, as characterized in
Fig. 3c. Utilizing this system, we successfully characterize the CL and
time-resolved CL spectra of a CdSe/ZnS quantum dot film (Fig. 4c,d),
which are consistent with their far-field optical excitation PL and time-
resolved PL spectra, respectively.

In summary, we present a stable ultrafast electron source based
on optical fiber-integrated graphene by exploiting a hot-carrier ther-
malization mechanism and a unique optical fiber integration archi-
tecture. In contrast to conventional ultrafast electron sources,
our fiber-integrated graphene emitter exhibits direct instrumental
compatibility and maintains stable performance in low vacuum

environments, under a low-intensity near-infrared laser excitation. In
the future, by manipulating the optical modes of optical fibers and
employing the rich properties of 2D materials for surface-state elec-
tron emission, our approach suggests a path to construct versatile
ultrafast electron sources, such as electron beams with spin, orbital
momentum or high coherence.

Methods
Fabrication of optical fiber-integrated graphene electron source
The fabrication is based on single-mode optical fiber (Corning SMF-
28e+ at 1560 nm and YOFC CS-780 at 800nm) and mechanically
exfoliated graphene. Monolayer to few-layer graphene is prepared on
the PPC (polypropylene carbonate) film by tapes, which are spin-
coated on SiO2/Si. The PPC film is peeled off and upside-down sus-
pended, holding the wanted sample at the bottom side. A ~10μm
PMMA (polymethyl methacrylate) microsphere is first placed on the
optical fiber to cover the fiber core. Then, the optical fiber is deposited
with a conducting film of 5 nmPd (adhesion layer) and 60nm Au by
electronbeamevaporation. After that, thefiber is immersed in acetone
to remove the PMMAmicrosphere, leaving the exposed fiber core. The
prepared graphene sample on suspended PPC film is then transferred
onto the fiber end face. After alignment and contact of the fiber core
and graphene sample, graphene is released by heating to 130 °C. The
residual PPC is removed by acetone.

Optical excitation and measurement setup
The excitation pulsed laser used in this work contains different types:
Spectra-Physics Mai Tai oscillator (~100 fs, 80MHz, 690–1050 nm),
NPI Rainbow 1550 OEM ultrafast optical fiber laser (~80 fs, 80MHz,
1560 nm), Coherent Vitara oscillator (~15 fs, 80MHz, 800nm) and
Chameleon Ultra II (~140 fs, 80MHz, 680–1080 nm). A compensating
fiber (NKT HC-800) is used to compress the pulse width to about
180 fs, as it couples the 800nm Mai Tai beam into an optical
fiber. Under 1560 nm excitation, the pulse width at the graphene
position is measured as ~250 fs (APE PulseCheck USB-15). Under
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Fig. 4 | Ultrafast scanning electronmicroscope (SEM)basedon theopticalfiber-
integrated graphene ultrafast hot-electron source. a Schematic diagram of our
ultrafast SEM. A traditional scanningmicroscope body is equipped with our optical
fiber-integrated graphene ultrafast hot-electron source for spatial and temporal
imaging. CL: Cathodoluminescence; TCSPC: Time-correlated single-photon
counting; APD: Avalanche photodiode. b Images obtained from the ultrafast elec-
tron microscope using a secondary electron detector. High signal-to-background

ratio images can be captured when the laser is turned on, benefiting from the pure
pulsedelectrons fromgraphene. cCL and far-fieldPL spectraofCdSe/ZnSquantum
dots. d Time-resolved CL and PL spectra (circles) of CdSe/ZnS quantum dots. The
exponential decay fitting (solid lines) gives decay lifetimes of CL (τCL) and PL (τPL)
of 2.5 ns and 2.6 ns, respectively. The optical excitation at 1560 nm is transmitted
via optical fiber.
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35mW excitation, the peak intensity is calculated to be ~2.2 GW/cm2

with a laser spot diameter of ~10μm, a pulse width of ~250 fs and a
repetition rate of 80MHz. Hot-electron emission autocorrelation of
the on-chip device is conducted using Vitara with a tested pulse
width of ~40 fs at 800nm. To obtain a precise ultrafast PL spectrum,
the collecting system, including the collecting fiber and the spec-
trometer, is calibrated using the blackbody light source (Newport
Oriel). The optical signal is measured by a Princeton SP2500 spec-
trometer. Electron energy spectrum emitted from graphene with
800nm excitation (Chameleon Ultra II, ~180 fs at sample position) is
measured in a photoemission electronmicroscopy (FOCUS, IS-PEEM)
equipped with an imaging energy filter (IEF) type electron energy
analyzer.

Electrical measurement setup
The electrical measurement system is based on a customized optical
fiber test holder. Applied voltage (± 200V maximum) and anode col-
lecting current (0.1 fA resolution) are conducted through Keithley
2636B source meter. All the experiments are conducted at room
temperature.

Ultrafast SEM imaging and spectroscopy
The ultrafast electron microscope is modified based on ZEM-15 (ZEP-
TOOLS). The initial tungsten thermal electron gun is replaced by an
optical fiber-integrated graphene ultrafast hot-electron gun with
careful alignment with the electron optical axis. The image is captured
with an E-T type secondary electron detector with excitation laser at
1560 nm (NPI Rainbow 1550 OEM). CL is collected and guided to the
spectrometer (Princeton SP2500) and a time-correlated single-photon
counting (TCSPC) system with an avalanche photodiode detector
(Picoquant, Timeharp 260).

Data availability
Relevant data supporting the key findings of this study are available
within the article and the Supplementary Information file. All raw data
generated during the current study are available from the corre-
sponding authors upon request.
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